Hydration change of aqueous lanthanide ions and tetrad effects in lanthanide(III)-carbonate complexation
Mao Kawabe
Geochemical Journal, Vol. 33, No. 4, P. 267-275, 1999
ABSTRACT
Lanthanide(III)-carbonate complexes, LnCO3+(aq) and Ln(CO3)2-(aq), are the principal Ln(III) species in seawater. Their logarithmic stability constants, logβ1(Ln(CO3)+) and logβ2(Ln(CO3)2-) defined by total carbonate ion concentration, are known to show “irregular” variations across the series. The irregularities are explained by the hydration change of light Ln3+(aq) and the refined spin-pairing energy theory (RSPET). The hydration change of Ln3+(aq) affects the stability constants, because they are given by the reactions of Ln3+(aq) With CO32-(aq) and 2CO32-(aq), respectively. However, it does not affect their ratio of [β2(Ln(CO3)2-)/β1(LnCO3+)] which is the stepwise stability constant of Ln(CO3)2-(aq) for the reaction: LnCO3+(aq) + CO32-(aq) = Ln(CO3)2-(aq). Only when corrected for the hydration change of Ln3+(aq), the logβ1(Ln(CO3)+) values exhibit a regular convex tetrad effect across the series. Similarly corrected logβ2(Ln(CO3)2-) values also show a convex tetrad effect with a small break at Pr. The log [β2 (Ln(CO3)2-)/β1(LnCO3+)] values are fairly constant, but display a small octad effect with convexity and the small break at Pr. The LnCO3+(aq) series appears to be an isomorphous complex series, but the Ln(CO3)2-(aq) series involves a structural change between the three lightest Ln members and the others. The RSPET analysis has been made for the tetrad effects after the correction for hydration change of Ln3+(aq), in which the small break at Pr in logβ2(Ln(CO3)2-) has also been corrected successfully. It was revealed that Racah E1 and E3 parameters decrease in the order that Ln3+(aq, octahydrate) >> LnCO3+(aq) > Ln(CO3)2-(aq). This corresponds to the nephelauxetic effect known in spectroscopic studies of Ln(III) complexes.
All Issues
- Vol.58, 2024
- Vol.57, 2023
- Vol.56, 2022
- Vol.55, 2021
- Vol.54, 2020
- Vol.53, 2019
- Vol.52, 2018
- Vol.51, 2017
- Vol.50, 2016
- Vol.49, 2015
- Vol.48, 2014
- Vol.47, 2013
- Vol.46, 2012
- Vol.45, 2011
- Vol.44, 2010
- Vol.43, 2009
- Vol.42, 2008
- Vol.41, 2007
- Vol.40, 2006
- Vol.39, 2005
- Vol.38, 2004
- Vol.37, 2003
- Vol.36, 2002
- Vol.35, 2001
- Vol.34, 2000
- Vol.33, 1999
- Vol.32, 1998
- Vol.31, 1997
- Vol.30, 1996
- Vol.29, 1995
- Vol.28, 1994
- Vol.27, 1993
- Vol.26, 1992
- Vol.25, 1991
- Vol.24, 1990
- Vol.23, 1989
- Vol.22, 1988
- Vol.21, 1987
- Vol.20, 1986
- Vol.19, 1985-1986
- Vol.18, 1984
- Vol.17, 1983
- Vol.16, 1982
- Vol.15, 1981
- Vol.14, 1980
- Vol.13, 1979
- Vol.12, 1978
- Vol.11, 1977
- Vol.10, 1976
- Vol.9, 1975
- Vol.8, 1974
- Vol.7, 1973
- Vol.6, 1972-1973
- Vol.5, 1971
- Vol.4, 1970-1971
- Vol.3, 1969-1970
- Vol.2, 1968
- Vol.1, 1966-1967