JavaScript requeired.
Geochemical Journal
Geochemical Journal An open access journal for geochemistry
subscription
Published for geochemistry community from Geochemical Society of Japan.

Sediment geochemistry of the Yamuna River System in the Himalaya: Implications to weathering and transport

Tarun K. Dalai, R. Rengarajan, P. P. Patel
Geochemical Journal, Vol. 38, No. 5, P. 441-453, 2004

ABSTRACT

Bed sediments of the Yamuna River and its tributaries in the Himalaya (Yamuna River System, YRS) have been analyzed for major elements and trace metals (Sr, Ba, Ni, Cu, Co, Zn, Pb and Cr). These results have been used to characterize chemical weathering and transport in the Himalaya, to assess relative mobility of elements during weathering and to understand heavy metal association. Concentrations of major and trace elements of YRS sediments vary between 20 and 50%. In general, elemental variability reduces when data are analyzed individually for the major rivers, suggesting that tributaries draining diverse lithology contribute significant variations. Comparison of sediment chemistry with composition of source rocks and average Upper Continental Crust (UCC) suggests significant loss of Na, K, Ca and Mg from source rocks during weathering, the degree of loss being more for Ca and Na. Chemical index of alteration (CIA) for YRS sediments averages at 59, indicating that weathering in the basin is of moderate intensity. This inference is also supported by major ion chemistry of YRS waters and is attributed to steep gradient and enhanced physical erosion in the basin. Available results seem to indicate that Na and Sr are effectively more mobile than Ba, which is thought to be a combined effect of higher solubility of Na and Sr, and the affinity of Ba to be adsorbed onto solid phase. Heavy metals show significant positive correlation with Al and weak correlation with Fe, Mn and P. These observations suggest that metal concentrations are controlled mainly by clay mineral abundances, and that Fe-Mn oxides and organic matter may be playing less significant role. Heavy metal concentrations of YRS sediments are lower than those of suspended particulates of the Yamuna river, presumably due to higher clay mineral abundances in the latter. Strong association of metals with Al, and lower metal concentrations in bed sediments compared to suspended matter underscores the importance of sediment transport and mineral sorting in influencing the YRS sediment chemistry. Enrichment factor and geo-accumulation index calculated for heavy metals in YRS sediments suggest that they are mainly of natural origin and that anthropogenic activities exert little influence on their abundances.

KEYWORDS

Yamuna River, Himalaya, chemical weathering, sediment chemistry, elemental mobility

All Issues

Current Issue:
Stats:
Impact Factor: 0.8 (2022)
Submission to final decision: 9.6 weeks (2022)
Geochemical Society of Japan

page top