JavaScript requeired.
Geochemical Journal
Geochemical Journal An open access journal for geochemistry
subscription
Published for geochemistry community from Geochemical Society of Japan.

Mesozoic mafic dikes from the Shandong Peninsula, North China Craton: Petrogenesis and tectonic implications

SHEN LIU, HAIBO ZOU, RUIZHONG HU, JUNHONG ZHAO, CAIXIA FENG
Geochemical Journal, Vol. 40, No. 2, P. 181-195, 2006

ABSTRACT

Mesozoic mafic dikes are widely distributed in Luxi (Mengyin and Zichuan) and Jiaodong regions of the Shandong Peninsula, China, providing an opportunity of investigating the nature of the lost lithospheric mantle beneath the North China Craton (NCC). The mafic dikes are characterized by strong depletion in high field strength elements (HFSE), enrichment in light rare earth elements (LREE), highly variable Th/U ratios, high initial (87Sr/86Sr)i (0.7050-0.7099) and negative εNd(T) (-6.0 to -17.6). They were derived from melting of metasomatized portions of the subcontinental lithospheric mantle, followed by fractionation of clinopyroxenes. The similarity in Nd isotopic compositions between the Mengyin gabbro dikes and the Paleozoic peridotite xenoliths suggests that ancient lithospheric mantle was still retained at 120 Ma below Mengyin, although the ancient lithospheric mantle in many other places beneath NCC had been severely modified. There might be multiple enrichment events in the lithospheric mantle. An early-stage (before or during Paleozoic) rutile-rich metasomatism affected the lithospheric mantle below Mengyin, Jiaodong and Zichuan. Since then, the lithospheric mantle beneath Mengyin was isolated. A late-stage metasomatism by silicate melts modified the lithospheric mantle beneath Jiaodong and Zichuan but not Mengyin. The removal of the enriched lithospheric mantle and the generation of the mafic dikes may be mainly related to the convective overturn accompanying Jurassic-Cretaceous subduction of the paleo-Pacific plate.

KEYWORDS

mesozoic, magmatism, trace element, Nd-Sr-Pb isotopes, Shandong

All Issues

Current Issue:
Stats:
Impact Factor: 0.8 (2022)
Submission to final decision: 9.6 weeks (2022)
Geochemical Society of Japan

page top