Effect of organic matrices on the determination of the trace element chemistry (Mg, Sr, Mg/Ca, Sr/Ca) of aragonitic bivalve shells (Arctica islandica)—Comparison of ICP-OES and LA-ICP-MS data
BERND R. SCHÖNE, ZENGJIE ZHANG, DORRIT JACOB, DAVID P. GILLIKIN, THOMAS TÜTKEN, DIETER GARBE-SCHÖNBERG, TED MCCONNAUGHEY, ANALÍA SOLDATI
Geochemical Journal, Vol. 44, No. 1, P. 23-37, 2010
ABSTRACT
The element chemistry of biogenic carbonates can provide important data on past environments. However, the Sr/Ca and Mg/Ca ratios as well as the Mg and Sr concentrations of biological carbonates, especially aragonitic bivalves often depart from apparent thermodynamic equilibrium. When measured in situ by means of LA-ICP-MS, the Mg concentration is often substantially enriched (two- to threefold) near the organic-rich, annual growth lines. To test the hypothesis that some organic components exert a major influence on the skeletal metal content, the element chemistry of different shell components (insoluble organic matrix, IOM; dissolved CaCO3 and soluble organics, SOM) of Arctica islandica was measured by means of ICP-OES and LA-ICP-MS. The ICP-OES data indicate that the IOM is strongly enriched in Mg (130 ppm) and depleted in Sr and Ca (10 ppm and 0.22 wt%, respectively) when compared to the whole biomineral (Mg: 68 to 99 ppm, Sr: 860 to 1,060 ppm, Ca: ∼35.72 wt%). Although the average relative abundance of the IOM barely exceeds 0.46 wt%, its chemical composition in combination with its heterogeneous distribution across the shell can significantly increase estimates of the Mg concentration if measured in situ by LA-ICP-MS. Depending on the distribution of the IOM, the Ca concentration may be significantly lower locally than the average Ca concentration of the whole shell (35.72 wt%). If this remains undetected, the Mg concentration of shell portions with higher than average IOM content is overestimated by LA-ICP-MS and, conversely, the Mg concentration is underestimated in shell portions with lower than average IOM content. Removal of the IOM prior to the chemical analysis by LA-ICP-MS or mathematical correction for the IOM-derived magnesium concentrations is therefore strongly advised. The different chemistry of the IOM may also exert a major control on the trace element to calcium ratios. Shell portions enriched in IOM will show up to 200 times higher Mg/Ca and up to two times higher Sr/Ca ratios than the average shell of A. islandica. Without removal of the IOM prior to the analysis, Mg/Ca and Sr/Ca ratios of shell portions with higher IOM content cannot be used as paleothermometers. Because it is currently impossible to remove the IOM prior to chemical analyses by LA-ICP-MS, we recommend the use of wet chemical techniques (= possibility to separate and measure individual shell components) such as ICP-OES at the expense of lower sampling resolution. The results of this study will significantly improve our understanding of shell-based climate and environmental proxies.
KEYWORDS
trace elements, bivalve shell, organics, LA-ICP-MS, ICP-OES, sclerochronology
All Issues
- Vol.58, 2024
- Vol.57, 2023
- Vol.56, 2022
- Vol.55, 2021
- Vol.54, 2020
- Vol.53, 2019
- Vol.52, 2018
- Vol.51, 2017
- Vol.50, 2016
- Vol.49, 2015
- Vol.48, 2014
- Vol.47, 2013
- Vol.46, 2012
- Vol.45, 2011
- Vol.44, 2010
- Vol.43, 2009
- Vol.42, 2008
- Vol.41, 2007
- Vol.40, 2006
- Vol.39, 2005
- Vol.38, 2004
- Vol.37, 2003
- Vol.36, 2002
- Vol.35, 2001
- Vol.34, 2000
- Vol.33, 1999
- Vol.32, 1998
- Vol.31, 1997
- Vol.30, 1996
- Vol.29, 1995
- Vol.28, 1994
- Vol.27, 1993
- Vol.26, 1992
- Vol.25, 1991
- Vol.24, 1990
- Vol.23, 1989
- Vol.22, 1988
- Vol.21, 1987
- Vol.20, 1986
- Vol.19, 1985-1986
- Vol.18, 1984
- Vol.17, 1983
- Vol.16, 1982
- Vol.15, 1981
- Vol.14, 1980
- Vol.13, 1979
- Vol.12, 1978
- Vol.11, 1977
- Vol.10, 1976
- Vol.9, 1975
- Vol.8, 1974
- Vol.7, 1973
- Vol.6, 1972-1973
- Vol.5, 1971
- Vol.4, 1970-1971
- Vol.3, 1969-1970
- Vol.2, 1968
- Vol.1, 1966-1967