JavaScript requeired.
Geochemical Journal
Geochemical Journal An open access journal for geochemistry
Published for geochemistry community from Geochemical Society of Japan.

Interactive evolution of multiple water-ice reservoirs on Mars: Insights from hydrogen isotope compositions

Hiroyuki Kurokawa, Tomohiro Usui, Masahiko Sato
Geochemical Journal, Vol. 50, No. 1, P. 67-79, 2016


Remote sensing data from orbiter missions have proposed that ground ice may currently exist on Mars, although the volume is still uncertain. Recent analyses of Martian meteorites have suggested that the water reservoirs have at least three distinct hydrogen isotope compositions (D/H ratios): primordial and high D/H ratios, which are approximately the same and six times that of ocean water on Earth, respectively, and a newly identified intermediate D/H ratio, which is approximately two to three times higher than that in ocean water on Earth. We calculate the evolution of the D/H ratios and the volumes of the water reservoirs on Mars by modeling the exchange of hydrogen isotopes between multiple water reservoirs and the atmospheric escape. The D/H ratio is slightly higher in the topmost thin surface-ice layer than that in the atmosphere because of isotopic fractionation by sublimation, whereas the water-ice reservoir just below the exchangeable topmost surface layer retains the intermediate D/H signature found in Martian meteorites. We propose two possible models for constraining the volume of the ground ice considering the observed D/H ratios and geomorphological estimates of Paleo-oceans. The first assumes that the atmospheric loss is dominated by the Jeans escape. In this case, the volume of ground ice should be larger than the total volume of the observable surface ice that mainly occurs as polar layered ice deposits. The other model assumes diffusion-limited atmospheric loss in which the interactive evolution of the multiple water reservoirs naturally accounts for the observed D/H ratios. In this scenario, a large volume of ground ice does not necessarily exist currently on Mars as opposed to the perspective view proposed on the basis of recent orbiter missions.


Mars, water, ice, isotope, atmospheric escape

All Issues

Current Issue:
Impact Factor: 1.0 (2023)
Submission to final decision: 9.6 weeks (2022)
Geochemical Society of Japan

page top