JavaScript requeired.
Geochemical Journal
Geochemical Journal An open access journal for geochemistry
Published for geochemistry community from Geochemical Society of Japan.

Equilibrium Cd isotopic fractionation between Cd(OH)2(s), apatite, adsorbed Cd2+, and Cd2+(aq): Potential application of δ114Cd in evaluating the effectiveness of Cd-contamination remediation

Hong-Tao He, Le-Cai Xing, Shen-Jun Qin, Xin-Yue Ji, Peng-Fei Sun
Geochemical Journal, Vol. 54, No. , P. 289-297, 2020


Exacerbation of Cd contamination in soil is exerting a threat to food safety. Recently, Cd isotope geochemistry has been suggested for tracing the fate of this heavy metal in soil systems. However, its utility as a tool for evaluating the effectiveness of pollution remediation efforts has not been carefully considered. In the present work, first principle calculations based on density functional theory were employed to probe the most stable geometries of Cd-containing species including aqueous Cd2+, Cd(OH)2(s), Cd2+ adsorbed on kaolinite edge surfaces, and Cd2+ incorporated into apatite lattice sites. Meanwhile, equilibrium Cd isotopic fractionations during conversions of free Cd2+ to immobile species were precisely quantified. At room temperature, equilibrium Cd isotopic fractionations between Cd(OH)2(s), Cd2+ adsorbed on kaolinite edge surfaces, Cd2+ incorporated into apatite lattice sites (Ca1 and Ca2 sites), and aqueous Cd2+ were 0.58–0.64‰, –0.13‰, –0.88‰, and –0.72‰, respectively. During an in situ remediation, with the aid of these isotopic fractionation factors, we predicted a gradual decreasing trend in δ114Cd in soil with decreased fractions of mobile species (free Cd2+, exchangeable Cd2+, and non-specific adsorbed Cd2+). These results may provide a theoretical framework for future observations in field experiments.


soil contamination, cadmium, equilibrium isotopic fractionation, in situ remediation, first principle calculations

All Issues

Current Issue:
Impact Factor: 1.561
Geochemical Society of Japan

page top