JavaScript requeired.
Geochemical Journal
Geochemical Journal An open access journal for geochemistry
subscription
Published for geochemistry community from Geochemical Society of Japan.

Groundwater geochemistry in the Koongarra ore deposit, Australia (II): Activity ratios and migration mechanisms of uranium series radionuclides

Nobuyuki Yanase, Timothy E. Payne, Keiichi Sekine
Geochemical Journal, Vol. 29, No. 1, P. 31-54, 1995

ABSTRACT

The concentrations of uranium series radionuclides in groundwater were determined to investigate the migration behavior of radionuclides in the Koongarra ore deposit. Particular attention was given to 238U and alpha-emitting radionuclides in its decay chain, including 234U, 230Th, 226Ra, and 222Rn, and beta-emitting 210Pb. Disequilibrium between various members of the 238U decay chain in the Koongarra system arises from a combination of factors, including differences in solubility, surface affinity, the degree of weathering, diffusion of gaseous 222Rn, alpha-recoil effects and redox processes. Measured groundwater 234U/238U activity ratios were below unity in the surficial weathered zone (shallower than about 20 m depth), and greater than unity in the deeper unweathered zone (>30 m depth). These were attributed to various mechanisms related to the alpha-recoil process. Groundwater concentrations of 230Th, and also 230Th/238U ratios were extremely low, indicating that thorium is immobile in this system. Radium-226 was relatively immobile in groundwaters of the weathered zone, with lower 226Ra/238U ratios than deeper groundwaters. This was attributed to co-precipitation of radium together with manganese and ferric hydroxides at the base of the weathered zone, and also to the greater abundance of radium-sorbing minerals in the weathered zone. Large excess concentrations of 222Rn were found in most Koongarra groundwaters, indicating substantial loss of 222Rn from the solid phase despite its short half-life. The 210Pb/222Rn ratios were relatively constant and it was possible to compute an average scavenging residence time for 210Pb in the groundwater of about 6 days using a simple box model. The patterns of dispersion of uranium series radionuclides in Koongarra groundwaters also suggest that present-day migration is toward the south of the orebody. This conclusion is in agreement with the outcome of the geochemistry study.

All Issues

Current Issue:
Stats:
Impact Factor: 0.8 (2022)
Submission to final decision: 9.6 weeks (2022)
Geochemical Society of Japan

page top